
30 Oberwolfach Report 43/2023
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Bivariate Bernstein-Szegő polynomials

Plamen Iliev

(joint work with Jeffrey S. Geronimo)

The Bernstein-Szegő measures and polynomials on the real line play an important
role in probability, numerical analysis and approximation theory. In this talk, I will
define bivariate extensions of these measures and associated spaces of polynomials,
and discuss their spectral and characteristic properties. The talk is based on the
work [4].

Bernstein-Szegő measures on R. An important class of measures on R intro-
duced by Bernstein and Szegő are the measures of the form

(1) dµ =
2

π

√
1− x2

Q(x)
χ(−1,1)(x) dx,

where Q(x) is a polynomial nonvanishing on (−1, 1), with at most simple zeros
at x = ±1 and χJ denotes the characteristic function of a set J . Recall that if
{pk(x)}∞k=0 are orthonormal polynomials with respect to a measure µ on the real
line, then the multiplication by x can be represented by a three-term operator

ak+1pk+1(x) + bkpk(x) + akpk−1(x) = xpk(x).

Suppose that Q(x) is a polynomial of degree at most 2n for some positive inte-
ger n, and let q(z) denote the stable Fejér-Riesz factor of Q(x), i.e. q(z) is the
unique polynomial with real coefficients and no zeros in the closed unit disk, except
possibly for simple zeros at z = ±1, such that

Q(x) = q(z)q(1/z), where x =
1

2

(
z +

1

z

)
,

normalized so that q(0) > 0. We can define orthonormal polynomials with respect
to µ in (1) by

(2) pk(x) =
zk+1q(1/z)− z−k−1q(z)

z − 1/z
for k ≥ n.
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The last equation implies that

(3) ak+1 =
1

2
and bk = 0 for k ≥ n.

Conversely, if (3) holds then (1) holds for some polynomial Q(x) of degree at most
2n if and only if

q(z) = zn (pn(x) − 2zanpn−1(x)) $= 0 for z ∈ (−1, 1),

see [1, 2] and the references therein.

Bivariate extension. Let R[x, y] denote the space of all polynomials of x and
y with real coefficients, and for k, l ∈ N0, let Rk[x] = spanR{xi : 0 ≤ i ≤ k},
Rl[y] = spanR{yi : 0 ≤ i ≤ l}, Rk,l[x, y] = spanR{xiyj : 0 ≤ i ≤ k, 0 ≤ j ≤ l}. For
a measure µ on R2 we set

Pk,l;µ[x, y] = Rk,l[x, y]' Rk−1,l[x, y] and P̃k,l;µ[x, y] = Rk,l[x, y]' Rk,l−1[x, y].

We can construct an orthonormal basis {pjk,l(x, y) : 0 ≤ j ≤ l} of the space
Pk,l;µ[x, y] using lexicographical order of the monomials and we set
Pk,l(x, y) = [p0k,l(x, y), p

1
k,l(x, y), . . . , p

l
k,l(x, y)]

t. Similarly, we use reverse lexico-

graphical order of the monomials to construct a basis {p̃jk,l(x, y) : 0 ≤ j ≤ k}
for P̃k,l;µ[x, y], and we set P̃k,l(x, y) = [p̃0k,l(x, y), p̃

1
k,l(x, y), . . . , p̃

k
k,l(x, y)]

t. These
vector polynomials satisfy the following recurrence relations

xPk,l(x, y) = Ak+1,lPk+1,l(x, y) +Bk,lPk,l(x, y) +At
k,lPk−1,l(x, y),

yP̃k,l(x, y) = Ãk,l+1P̃k,l+1(x, y) + B̃k,lP̃k,l(x, y) + Ãt
k,lP̃k,l−1(x, y),

where Ak,l, Bk,l are (l + 1)× (l + 1) matrices and Ãk,l, B̃k,l are (k + 1)× (k + 1)
matrices. Suppose that x = 1

2

(
z + 1

z

)
, y = 1

2

(
w + 1

w

)
and

• ω(z, w) ∈ Rn0,m0
[z, w] is nonzero for |z| ≤ 1, |w| ≤ 1;

• q1(x) ∈ R2n1
[x] is positive for x ∈ (−1, 1), having at most simple zeros at ±1;

• q2(y) ∈ R2m1
[y] is positive for y ∈ (−1, 1), having at most simple zeros at ±1.

Then the recurrence coefficients of the measure

(4) dµ(x, y) =
4

π2

χ(−1,1)2(x, y)
√
1− x2

√
1− y2

q1(x)q2(y)ω(z, w)ω(1/z, w)ω(z, 1/w)ω(1/z, 1/w)
dx dy,

satisfy

Ak+1,l =
1

2
Il+1, Bk,l = 0, for all k ≥ n, l ≥ m,(5a)

Ãk,l+1 =
1

2
Ik+1, B̃k,l = 0, for all k ≥ n, l ≥ m,(5b)

where n = n0 + n1, m = m0 +m1. In view of the spectral properties (5), we can
regard the measures (4) as bivariate extensions of the Bernstein-Szegő measures.
Note that (5) are invariant if we replace Pk,l(x, y) by OlPk,l(x, y) and P̃k,l(x, y) by
ÕkP̃k,l(x, y), where Ol and Õk are orthogonal matrices depending only on l and k,
respectively. We use this freedom to define explicit bases of the spaces Pk,l;µ[x, y],
P̃k,l;µ[x, y] for k ≥ n and l ≥ m which provide a bivariate extension of the Szegő
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mapping (2). Let q̃1(z) and q̃2(w) be the stable Fejér-Riesz factors of q1(x) and
q2(y), respectively. If {U q2

j (y)} denote the orthonormal polynomials with respect

to 2
π

√
1−y2

q2(y)
χ(−1,1)(y)dy on the real line, and if we set

p̂(z, y) = q̃1(z)ω(z, w)ω(z, 1/w) and p̂k(x; y) =
zk+1p̂(1/z, y)− z−k−1p̂(z, y)

z − 1/z
,

then the one-dimensional Bernstein-Szegő theory implies that{p̂k(x; y)U q2
j (y)}l−m0

j=0

are orthonormal elements in Pk,l;µ[x, y]. Note that we have already used the sta-
ble Fejér-Riesz factor of the inverse of the weight, and we need m0 new quanti-
ties for a basis of the complement. It turns out that the elements in the space
Pn0,m0−1;µω [z, w] = Rn0,m0−1[z, w] ' Rn0−1,m0−1[z, w] for the Bernstein-Szegő

measure dµω = 1
(2π)2

|dz| |dw|
|ω(z,w)|2 on the torus T2 = {(z, w) ∈ C2 : |z| = |w| = 1}

can be used to build the necessary m0 orthonormal elements in the comple-
ment. On the space of Laurent polynomials R[z±1, w±1] we define the involu-
tion Rn0

w by Rn0
z (g(z, w)) = zn0g(1/z, w), and for f(z, w) ∈ R[z, w] we denote

by Mf(z,w) the multiplication by f(z, w), i.e. Mf(z,w)(g(z, w)) = f(z, w)g(z, w).

Finally, let Sz,k and Sw,l denote the mappings Sz,k(f(z)) =
zk+1f(1/z)−z−k−1f(z)

z−1/z ,

Sw,l(g(w)) =
wl+1g(1/w)−w−l−1g(w)

w−1/w , and Sk,l = Sz,k ◦Sw,l : R[z, w] → R[x, y]. With
these notations, we define Tk,l = Sk,l ◦Mq̃1(z)q̃2(w)ω(z,w) ◦Rn0

z .
Then Tk,l : Pn0,m0−1;µω [z, w] → Pk,l;µ[x, y] is an isometry and

Pk,l;µ[x, y] = Tk,l(Pn0,m0−1;µω [z, w])
l−m0⊕

j=0

spanR{p̂k(x; y)U
q2
j (y)}.

Note that the space Pn0,m0−1;µω [z, w] in the last formula is independent of k and
l. Therefore, if we fix an orthonormal basis of this space, the multiplications by x
and y on its image in Pk,l;µ[x, y] will be represented by Chebyshev relations. An
analogous decomposition holds for P̃k,l;µ[x, y] and can be obtained by exchanging
the roles of x and y.

Detailed proofs, examples, different extensions of the above constructions and
connections to the theory of matrix-valued orthogonal polynomials can be found
in [4]. In particular, an interesting new phenomenon in the bivariate case is that
the characterization of the Bernstein-Szegő measures in terms of finitely many
moments requires new polynomial identities which connect the Fejér-Riesz fac-
torizations of the weight (4) to canonical polynomials depending on three vari-
ables associated with a measure on R2. A challenging open question is to give a
complete characterization of the Bernstein-Szegő measures in terms of appropriate
recurrence coefficients for the orthogonal spaces similarly to the spectral character-
ization of the Bernstein-Szegő measures on the torus T2 in [3]. Another interesting
direction is to explore applications of the bivariate Bernstein-Szegő polynomials
in numerical analysis, approximation theory and probability.
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Sobolev orthogonal polynomials and spectral methods in boundary
value problems

Miguel A. Piñar

(joint work with Lidia Fernández, Francisco Marcellán, and Teresa E. Pérez)

The solution of the boundary value problem (BVP, in short) for the ordinary
linear differential equation associated with a stationary Schrödinger equation with
potential V (x) = x2k,

(1)
−u′′ + λx2k u = f(x),

u(−1) = u(1) = 0,

where λ > 0, can be studied from a variational perspective according to the fact
you can associate a Sobolev inner product

(2) 〈u, v〉λ = λ

∫ 1

−1
u(x) v(x)x2k dx+

∫ 1

−1
u′(x) v′(x) dx,

appearing in the variational formulation of (1). This problem, when k = 1, has
been considered in [5].

Orthogonal polynomials with respect to Sobolev inner products

(3) 〈f, g〉S =

∫
f(x)g(x)dµ0(x) +

∫
f ′(x)g′(x)dµ0(x),

defined by a pair of positive measures (µ0, µ1) supported on the real line have
attracted the interest of many researchers (see [8], [9], and references therein).
They are interesting from several points of view. In approximation theory they
constitute a basic tool in smooth approximations by polynomials in the frame-
work of least square problems (see the seminal paper [7]). On the other hand,
some authors have considered Fourier expansions in terms of those polynomials
as an alternative to the standard ones (see [6]). In numerical analysis, for spec-
tral methods for boundary value problems for ordinary differential equations the
Sobolev orthogonal polynomials play an efficient role with respect to the classical
ones (see [2], [3], [4]). Indeed, they have been recently studied in the framework of
the so called diagonalized spectral methods for boundary value problems for some
elliptic differential operators, see [1], [10].


